
Supporting Text

Our model estimates the mean number of deaths from an airborne anthrax attack under

five different response strategies. The values of the model parameters are listed in Table 2.

We use a Gaussian plume model (1) adapted for an instantaneous point release. The model

is identical to the one used by Meselson et al. (2) for the Sverdlovsk outbreak, except

for the values of the height h and size Q of the release, and hence assumes dispersion

parameters given by Briggs (1) for neutral stability in open country, and ignores infectivity

decay, deposition, protection from buildings, secondary aerosolization, and limits on vertical

mixing. The number of spores inhaled by a person x meters directly downstream of the

release point, and y meters crosswind is

s(x, y) =
bQ

πuσyσz
e
− y2

2σ2y
− h2

2σ2z [1]

where σy = 0.08x/
√
1 + 0.0001x, σz = 0.06x/

√
1 + 0.0015x, u is the wind speed, and b is the

breathing rate. The height (100 m) can represent a release from the top of a tall building or

from a low-flying aircraft. The release amount corresponds to ≈ 1 kg of anthrax (2).
In our numerical computations, we consider the region up to X = 201 km downwind

and ±Y = 18 km crosswind. Note that with a wind speed of u = 5 m/s and an early

evening release, airborne anthrax spores would travel ≈ 200 km before being inactivated by

ultraviolet rays from the sun; extending X from 201 to 1,001 km only increases the number

of people infected in the base case by 4.0%. Although our model is formulated by using a

continuous state space, in the computations we discretize (x, y) space by using a grid of 1 km

to calculate the inhaled spore count. This region is divided into an urban area that is within

1



30 km downwind of the point of release and an outlying rural area. The population density

θ(x, y) is taken to be θu = 10
4 people per km2 (3) in the urban region and θr = 10

2 people

per km2 in the rural area, which generates 10.8 million urban residents and 0.7 million rural

residents in our study region. The probability density function (pdf) of the population’s age

is f(a), which is assumed to be uniformly distributed (with maximum age 85) within each of

the following four age classes: 33.4% 0−24, 31.5% 25-44, 22.4% 45-64, and 12.7% 65-85 (4).
People do not change location or age in our model.

Because of the strong age dependence in the dose-response relationship of inhalation

anthrax (2, 5, 6), we incorporate age into the probit model used by Glassman (7), so that

P (s, a) = Φ(α+ β log s+ γa+ δa2) [2]

is the likelihood that a person of age a gets infected from inhaling s spores (8), where Φ(·)
is the standard normal cumulative distribution function (cdf). The four parameters in Eq. 2

were estimated by a least-squares analysis using the ID50 and ID10 values, together with ages

15, 35, 55, and 75, in table 3 of ref. 9; see Fig. 2a.

Let Ij(x, y, a, t) denote the density of people in disease stage j at location (x, y), age

a, and time t, where j = 0, . . . , 4, denotes uninfected, incubation, prodromal, fulminant,

and death, respectively. Even though monkey studies reveal that the incubation period is

inversely related to dose (10-12), we performed a statistical analysis of the data in ref. 2

and were unable to detect a statistically significant relationship between incubation period

and either dose or age; a dose-dependent incubation period would increase the death toll

in our model by exacerbating congestion at the hospital queues in the urban service zones.

The duration of disease stages j = 1, 2, 3 have cdf Fj(t), pdf fj(t), survival function F̄j(t),
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and hazard rate function hj(t) = fj(t)/F̄j(t). These disease durations are taken to be log

normal, where the log durations have mean rj (i.e., the median disease period duration is

mj = erj ) and variance σ2j . The parameters m1 and σ21 are taken from an analysis of the

Sverdlovsk release (13). For j = 2, 3, the parameter σ2j was chosen so that the dispersion

factor dj = e
σj =

√
2, and hence 95% of the disease period durations fall within half of the

median and twice the median (13). The parameter rj was chosen to coincide with a mean

prodromal period of 2.5 days (in the absence of treatment) and a mean fulminant period of

1.5 days (5, 13).

The attack occurs at time 0, and intervention begins at time τ = 48 h. At time τ ,

the aerosol would be fully dispersed (14). At the time of the attack, we have I1(x, y, a, 0) =

θ(x, y)f(a)P (s(x, y), a), and I0(x, y, a, 0) = θ(x, y) − I1(x, y, a, 0), and until intervention
begins (i.e., for t ∈ [0, τ ]), the system state is given by

I0(x, y, a, t) = I0(x, y, a, 0), [3]

I1(x, y, a, t) = I1(x, y, a, 0)F̄1(t), [4]

I2(x, y, a, t) = I1(x, y, a, 0)[F1(t)−
t

0
f1(u)F2(t− u)du], [5]

I3(x, y, a, t) = I1(x, y, a, 0)[
t

0
f1(u)F2(t− u)du−

t

0

u

0
f1(v)f2(u− v) dv F3(t− u) du], [6]

I4(x, y, a, t) = I1(x, y, a, 0)[
t

0

u

0
f1(v)f2(u− v) dv F3(t− u) du]. [7]

To model intervention, we divide the 201 × 36-km region into square service zones

covering a 9-km2 urban area of 9×104 people or an 81-km2 rural area of 8,100 people. In New
York City, a point of distribution for antibiotics serves ≈ 33 K people, and a “911” hospital
serves ≈ 127 K people (Hauer, J. M., Congressional Testimony, Senate Health, Education,
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Labor and Pensions Committee, March 25, 1999); our choice of 90 K people in an urban

zone is between these two values. A two-stage (antibiotics and hospital) queueing system is

located in each zone and provides service only to people in that zone. As discussed later,

the local servers at these queues are assisted by a set of mobile hospital servers. Individuals

continue their disease progression while waiting in queue.

Combination antibiotics have two effects in our model. First, they are assumed to

be 90% effective (e1 = 0.9) at preventing symptomatic disease when administered during

the incubation period. While the antibiotics themselves are extremely effective (15), the

10% ineffectiveness is assumed to be primarily due to nonadherence of patients. Although

full adherence was < 50% among postal workers in 2001 (16,17), adherence would likely be

higher in a subsequent large-scale attack. Also, prodromal individuals who have received

antibiotics do not progress to the fulminant stage with probability e2 = 0.4. It has been

claimed that 45-80% of severely symptomatic inhalational anthrax patients die if they do

not receive immediate aggressive treatment in a state-of-the-art hospital (www.anthrax.mil).

The efficacy of combination antibiotics administered during the febrile stage, coupled with

aggressive supportive care (e.g., intravenous antibiotics, draining of pleural effusions), was

unexpectedly high in the fall of 2001 (5). It is not clear whether this was due to the care or to

the particular anthrax strain (10). With probability 1−e2, these individuals have a prodrome
duration (their prodromal clock is restarted if they receive antibiotics while in the prodromal

stage) that is log normal with median m2̃ = 2 days, dispersion factor d2̃ =
√
2, and hazard

rate function h2̃(t). People who complete their hospital care while in the prodromal stage

survive with probability 1, but neither antibiotics nor hospital care are capable of preventing
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death once someone enters disease stage 3 (5, 18). Note that while Sverdlovsk victims who

had late onset also had a higher survival rate (2), this may be due to delayed administration

of antibiotics and vaccines after the release.

In the five response policies in Table 1, a geographical ring, which grows over time,

is used to specify which asymptomatics get in the antibiotics queue and at what time. All

people who are symptomatic at time τ enter the antibiotics queue at time τ (the time

intervention begins), and anyone who becomes symptomatic after time τ is placed in the

queue at this later time if he did not previously join the queue (via the ring). A person enters

the hospital queue as soon as he both develops symptoms and receives antibiotics, which can

occur in either order. While antibiotics are administered only by local servers, hospital care

is administered by both local servers and mobile servers, the former representing workers

in a specific service zone, and the latter representing state and federal employees who can

be dynamically allocated across the entire region. The density of local servers at queue i

(where i = A is the antibiotic queue and i = H is the hospital queue) is ni(x, y), which we

assume is proportional to the population density at each location. The density of antibiotic

servers nA(x, y) was chosen so that, given the service rate µi (see below), antibiotics can

be distributed to the entire population in 4 days. The number of emergency nurses in the

United States in June 2001 was 89,300 and the number of emergency physicians in 2000

in the United States was 32,020 (www.aaem.org). Summing these two quantities, dividing

by 286 million people and dividing by three shifts of workers per day gives the density nH

shown in Table 2. In addition, there are mH mobile hospital servers who are used to handle

the overflow of patients who cannot be served locally in a timely fashion; these servers are

5



available τm = 18 h after the attack is detected (Hauer, J. M., Congressional Testimony,

Senate Health, Education, Labor and Pensions Committee, March 25, 1999). We assume

that each server at queue i is capable of serving patients at rate µi. Our mean service time for

antibiotic distribution of 7 min in Table 2 is close to the implied mean service time of about

5.7 min if three shifts are used, and 8.5 min if two shifts are used (Hauer, J. M., Congressional

Testimony, Senate Health, Education, Labor and Pensions Committee, March 25, 1999). The

mean hospital care time of 6 h in Table 2 is intended to include several hours to stabilize

a patient (e.g. provide intravenous antibiotics, monitor metabolites and electrolytes) and

several additional hours to provide reactive care (e.g., rehydration, thoracentesis, chest tube

placement) (5).

For notational purposes, we need to distinguish between the prodromal patients in the

hospital queue who may (with probability 1 − e2), or may not, progress to the fulminant
disease stage. To this end, we define disease stages 2̃ and 2̂ for people in the hospital queue

who have finite and infinite prodromal durations, respectively. For i = A, j = 0, 1, 2, 3, and

for i = H, j = 2̃, 2̂, 3, define Qij(x, y, a, w, t) to be the density of people in queue i at time t

who are in disease stage j at location (x, y) and have been in this disease stage for exactly

w time units. Let Qij(x, y, a, t) =
t
0 Q

i
j(x, y, a, w, t) dw be the density of people in queue i

at time t of age a and in disease stage j at location (x, y). Note that for j = 0, 1, 2̂, we need

not keep track of people’s “disease age” because people in stages 0 and 2̂ do not progress

and the disease age of individuals in stage 1 equals t, since they were infected at time 0.

In addition, let U1(x, y, a, t) be the density of people of age a in disease stage 1 at location

(x, y) who have unsuccessfully received antibiotics and will progress to symptoms.
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In the equations below, Aj(x, y, a, t), j = 0, 1 are the arrival rates of asymptomatics

to the antibiotics queue due to the ring strategy, and Sij(x, y, a, t) are the service rates from

queue i; both are described in detail later. All transitions are due to these arrivals and

services, or to disease progression. By our earlier discussion, the system state at time τ is

QA2 (x, y, a, w, τ ) = I1(x, y, a, 0)f1(τ−w)F̄2(w), QA3 (x, y, a, w, τ) = I1(x, y, a, 0) τ−w
0 f1(u)f2(τ−

w − u) du F̄3(w), and U1(x, y, a, τ) = QA0 (x, y, a, τ ) = QA1 (x, y, a, τ ) = QHj (x, y, a, w, t) = 0.
In addition, Ij(x, y, a, t) = 0 for j = 2, 3, t > τ . The dynamics for t ≥ τ are given by

dI0(x, y, a, t)

dt
= −A0(x, y, a, t), [8]

dQA0 (x, y, a, t)

dt
= A0(x, y, a, t)− SA0 (x, y, a, t)QA0 (x, y, a, t), [9]

dI1(x, y, a, t)

dt
= −A1(x, y, a, t)− h1(t)I1(x, y, a, t), [10]

dQA1 (x, y, a, t)

dt
= A1(x, y, a, t)− [h1(t) + SA1 (x, y, a, t)]QA1 (x, y, a, t), [11]

dU1(x, y, a, t)

dt
= (1− e1)SA1 (x, y, a, t)QA1 (x, y, a, t)− h1(t)U1(x, y, a, t), [12]

QA2 (x, y, a, 0, t) = h1(t)I1(x, y, a, t) + h1(t)Q
A
1 (x, y, a, t), [13]

∂QA2 (x, y, a, w, t)

∂w
+
∂QA2 (x, y, a, w, t)

∂t
= −[h2(w) + SA2 (x, y, a, t)]QA2 (x, y, a, w, t), [14]

QA3 (x, y, a, 0, t) =
t

0
h2(w)Q

A
2 (x, y, a, w, t) dw, [15]

∂QA3 (x, y, a, w, t)

∂w
+
∂QA3 (x, y, a, w, t)

∂t
= −[h3(w) + SA3 (x, y, a, t)]QA3 (x, y, a, w, t), [16]

QH2̃ (x, y, a, 0, t) = (1− e2) h1(t)U1(x, y, a, t) +
t

0
SA2 (x, y, a, t)Q

A
2 (x, y, a, w, t) dw , [17]

∂QH
2̃
(x, y, a, w, t)

∂w
+
∂QH

2̃
(x, y, a, w, t)

∂t
= −[h2̃(w) + SH2̃ (x, y, a, t)]QH2̃ (x, y, a, w, t), [18]
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dQH
2̂
(x, y, a, t)

dt
= e2 h1(t)U1(x, y, a, t) +

t

0
SA2 (x, y, a, t)Q

A
2 (x, y, a, w, t) dw

−SH2̂ (x, y, a, t)]QH2̂ (x, y, a, t), [19]

QH3 (x, y, a, 0, t) =
t

0
h2̃(w)Q

H
2̃ (x, y, a, w, t) dw, [20]

∂QH3 (x, y, a, w, t)

∂w
+
∂QH3 (x, y, a, w, t)

∂t
= SA3 (x, y, a, t)Q

A
3 (x, y, a, w, t)

−[h3(w) + SH3 (x, y, a, t)]QH3 (x, y, a, w, t), [21]

dI4(x, y, a, t)

dt
=

t

0
h3(w) Q

A
3 (x, y, a, w, t) +Q

H
3 (x, y, a, w, t) + S

H
3 (x, y, a, t)Q

H
3 (x, y, a, w, t) dw,

[22]

and the total dead is ∞
0

X
0

Y
−Y I4(x, y, a,∞) dy dx da.

It remains to specify the rates Aj(x, y, a, t) and S
i
j(x, y, a, t) appearing in the above

equations for the various policies. The ring-based strategy behind Aj(x, y, a, t) tracks the

cumulative number of symptomatic anthrax cases per capita at location (x, y) by time t,

assuming that this location has not entered the ring by time t. This quantity, which we call

the observed anthrax burden, is ∞
0 I1(x, y, a, 0) da F1(t)/θ(x, y). The ring at time t consists

of all locations that have burdens at least as large as the threshold p. Hence, location (x, y)

enters the ring at time

t∗(x, y) = F−11
pθ(x, y)

∞
0 I1(x, y, a, 0) da

if
∞

0
I1(x, y, a, 0) da > pθ(x, y), [23]

and t∗(x, y) = ∞ otherwise, where F−11 (·) denotes the inverse cdf of the incubation period.
Because intervention does not begin until time τ , if we let I{x} denote the indicator function

of the event x, then

A0(x, y, a, τ ) = I0(x, y, a, 0) I{τ≥t∗(x,y)}, [24]

8



A1(x, y, a, τ ) = I1(x, y, a, 0) F̄1(τ )I{τ≥t∗(x,y)}, [25]

and, for t > τ ,

A0(x, y, a, t) = I0(x, y, a, 0) I{t=t∗(x,y)}, [26]

A1(x, y, a, t) = I1(x, y, a, 0) F̄1(t
∗(x, y)) I{t=t∗(x,y)}. [27]

Finally, we specify the service rate terms Sij(x, y, a, t). DefineQ
i
j(x, y, t) =

∞
0 Qij(x, y, a, t) da

to be the total density of people in disease stage j at location (x, y) in queue i at time t,

QH2 (x, y, t) = j={2̃,2̂}Q
H
j (x, y, t) to be the total density of prodromals at the hospital queue

at location (x, y) at time t, and Qi(x, y, t) = 3
j=0Q

i
j(x, y, t) to be the total density of people

at location (x, y) in queue i at time t. The mass service policy is defined by

Sij(x, y, a, t) = µimin 1,
ni(x, y)

Qi(x, y, t)

+
µi

Qi(x, y, t)
(Qi(x, y, t)− ni(x, y))+min 1,

mi

X
0

Y
−Y (Qi(x, y, t)− ni(x, y))+ dy dx

I{t≥τ+τm}

[28]

for i = A, j = 0, . . . , 3 and for i = H, j = 2̃, 2̂, 3, where, for ease of presentation, we

define mA = 0. The first term on the right side of Eq. 28 represents service by the local

servers. Note that the maximum departure rate per capita is ni(x, y)µi and if there are more

people in queue than servers, the departure rates are proportional to the relative densities

of people in queue. The second term (for i = H) in Eq. 28 depicts the mH mobile servers

processing overflow people [i.e., leftover people in regions (x, y) where Qi(x, y, t) > ni(x, y)]

in proportion to their overflow densities in queue. The symptomatic priority policy, where

asymptomatic people in the antibiotics queue are only served if the number of servers exceeds
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the number of symptomatics in queue, is defined by Eq. 28 for i = H, j = 2̃, 2̂, 3, and by

SAj (x, y, a, t) = µAmin 1,
[nA(x, y)−QA2 (x, y, t)−QA3 (x, y, t)]+

QA0 (x, y, t) +Q
A
1 (x, y, t)

for j = 0, 1, [29]

SAj (x, y, a, t) = µAmin 1,
nA(x, y)

QA2 (x, y, t) +Q
A
3 (x, y, t)

for j = 2, 3. [30]

The symptomatic/prodromal policy, which builds on the symptomatic policy by giving pri-

ority to prodromal patients over fulminant patients in the hospital queue (i.e., prodromals

are served locally; then excess prodromals are served by mobile servers; then spare local

servers serve fulminants; and finally spare mobile servers serve fulminants), is defined by

Eqs. 29 and 30 and

SHj (x, y, a, t) = µH min 1,
nH(x, y)

QH2 (x, y, t)

+
µH

QH2 (x, y, t)
[QH2 (x, y, t)−nH(x, y)]+min 1,

mH

X
0

Y
−Y [Q

H
2 (x, y, t)− nH(x, y)]+ dy dx

I{t≥τ+τm}

[31]

for j = 2̃, 2̂, and

SH3 (x, y, a, t) = µH min 1,
[nH(x, y)−QH2 (x, y, t)]+

QH3 (x, y, t)

+
µH

QH3 (x, y, t)
[QH3 (x, y, t)− (nH(x, y)−QH2 (x, y, t))+]+

min 1,
[mH − X

0
Y
−Y (Q

H
2 (x, y, t)− nH(x, y))+ dy dx]+

X
0

Y
−Y [Q

H
3 (x, y, t)− (nH(x, y)−QH2 (x, y, t))+]+ dy dx

I{t≥τ+τm}, [32]

where the first term on the right side of Eq. 32 represents service of fulminant patients by

spare (i.e., not serving prodromals) local servers and the second term is due to processing

by spare mobile servers. The symptomatic-age policy and the symptomatic-age/prodromal
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policy incorporate on top of the symptomatic and symptomatic/prodromal policies, respec-

tively, a second layer of age-based priority at the antibiotics queue. Because this priority

layer is conceptually similar to the disease-based priority at the antibiotics queue, we omit

the detailed specifications of the symptomatic-age and symptomatic-age/prodromal policies.
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